Hydraulic Calculations

Hydraulic Calculations and Formulas

Our experienced technical engineers can help with the detailed number-crunching for your particular project and application. But here is a quick summary for your reference:

Hydraulic power is defined as flow multiplied by pressure. So the hydraulic power supplied by a pump is:

Power = (P x Q) ÷ 600
where power is in kilowatts [kW], P is the pressure in bars, and Q is the flow in litres per minute.

For example, if a pump delivers 180 litres/minute and the pressure is 250 bar, then the power of the pump is:

Power = (250 x 180) ÷ 600 = 75 kW.

When calculating the power input to the pump, the total pump efficiency ηtotal must be included. This efficiency is the product of volumetric efficiency, ηvol and the hydromechanical efficiency, ηhm. Power input = Power output ÷ ηtotal. The average for axial piston pumps, ηtotal = 0.87.

Continuing with the example above, the power source (for example a diesel engine or an electric motor), must be capable of delivering at least 75 ÷ 0.87 = 86 [kW].

The hydraulic motors and cylinders that the pump supplies with hydraulic power also have efficiencies and the total system efficiency (without including the pressure drop in the hydraulic pipes and valves) will end up at approximately 0.75.

Cylinders normally have a total efficiency of around 0.95 while hydraulic axial piston motors have 0.87, the same as the pump. In general the power loss in a hydraulic energy transmission is thus around 25% or more at ideal viscosity range 25-35 [cSt].

To calculate the required maximum power output for the diesel engine, then a basic estimation would be:

(1) Check the maximum power point, i.e. the point where pressure times flow reach their maximum value.

(2) Ediesel = (Pmax·Qtot)÷η.

Where:

Qtot = the theoretical pump flow for the consumers, not including leakages, at maximum power point.
Pmax = actual pump pressure at maximum power point.
Note: η is the total efficiency = (output mechanical power ÷ input mechanical power). For rough estimations, η = 0.75., although you can typically add 10-20% depending on the application to this power value.

(3) Calculate the required pump displacement from the required maximum sum of flow for the consumers in the worst case scenario and the diesel engine rpm at this point. The maximum flow can differ from the flow used for calculation of the diesel engine power.

Pump volumetric efficiency average, piston pumps: ηvol= 0.93.

Pump displacement Vpump= Qtot ÷ ndiesel ÷ 0.93.

(4) Calculation of preliminary cooler capacity: Heat dissipation from hydraulic oil tanks, valves, pipes and hydraulic components is less than a few percent in standard mobile equipment and the cooler capacity must include some margins. Minimum cooler capacity, Ecooler = 0.25Ediesel

At least 25% of the input power must be dissipated by the cooler when peak power is utilized for long periods. In normal case however, the peak power is used for only short periods, thus the actual cooler capacity required might be considerably less. The oil volume in the hydraulic tank is also acting as a heat accumulator when peak power is used.

The system efficiency is very much dependent on the type of hydraulic work tool equipment, the hydraulic pumps and motors used and power input to the hydraulics may vary considerably. Each circuit must be evaluated and the load cycle estimated. New or modified systems must always be tested in practical work, covering all possible load cycles.

An easy way of measuring the actual average power loss in the system is to equip the machine with a test cooler and measure the oil temperature at the cooler inlet, the oil temperature at the cooler outlet and the oil flow through the cooler, when the machine is in normal operating mode. From these figures the test cooler power dissipation can be calculated and this is equal to the power loss when temperatures are stabilized. From this test the actual required cooler can be calculated to reach specified oil temperature in the oil tank. One problem can be to assemble the measuring equipment in-line, especially the oil flow meter.

Testimonial: Rayne Precision Engineering

I have passed your cards onto a couple of our maintenance contractors and have given you a high recommendation to them both, so hopefully they too will be using in the future. Thanks for helping to get our repair solved so promptly.

Read More

Testimonial: Engineering Solutions

The valve arrived about 9:00am this morning. The service from you and Steve has been first class, so thank you very much. I shall certainly use your services again and recommend you to others. Thanks again and best regards.

Read More

Testimonial: Philippines

We would like to confirm receipt of your shipment for our initial order: PO# 07623. It was a pleasure having started working with you and we hope this is just the start of a good business relationship between our companies. Again, thank you very much and we look forward for more future business opportunities with you.

Read More

Testimonial: The Netherlands

Thank you for your service with selecting the proper pump. Pumps have arrived this morning and they completely conform with the old pumps.

Read More

Testimonial: Abernethy Trust

Please pass on my thanks to Steven for great customer service and his product knowledge; our gang mowers are back up and working.

Read More

Testimonial: Virginia

Please thank your team very much in helping me solve a pump issue. I needed a pump that was manufactured by a company no longer in business, and Steven was able to locate a duplicate that was manufactured by Parker.

Read More

Testimonial: Gwynedd

Thank you, Joanna. Mark’s quote was from a technical discussion which answered many questions that I have been trying to get without success from other suppliers. Please thank Mark for his time and expertise; it was so refreshing to have a knowledgeable person rather than a sales assistant.

Read More

Testimonial:Missouri

Just wanted to tell you that the pump fits and works perfectly. You were a big help, thank you.

Read More

Testimonial: Lift Company

Hi Mark, Thanks for sorting this out for me so quickly. Absolutely brilliant service… In this day and age it is so rare to come across a company with customer service to this level. Much appreciated.

Read More

Testimonial – Perth

Can you let the boys know that they are providing us with great service, parts and information in all our locations. Your service is prompt and reliable; you’re our “go to” guys when it comes to hydraulics.

Read More
New Monday, new week, new website! Today is the day we are launching our fresh and updated online experience. We’re [...] Read More
We’ve always known that our operations director, Helen is a force of nature, and it has been wonderful this week [...] Read More
Hydraulics Online has come a long way since it was founded in 2004 and, with our fifteenth-year anniversary just around [...] Read More
The decision to leap from a role within a giant tyre manufacturer employing 112,000 people worldwide to a family run [...] Read More

It’s official! We’ve got the vision! Hydraulics Online Co-founder, Helen Tonks has been shortlisted in the 2018 Enterprise Vision Awards […]

Read More

As their North West Business Exporter of the Year, the Federation of Small Businesses asked Hydraulics Online to speak at the 2018 […]

Read More

Hydraulics Online founders Mark and Helen recently had one of their most exciting interviews to date – with the radio […]

Read More

We did it again! Hydraulics Online is delighted to announce that we have been recognised as the North West Business Exporter […]

Read More

Mark’s entry into the fluid power industry was more than a little by chance but he now finds himself leading a […]

Read More

Federation of Small Businesses Award Finalist: North West Business Exporter of the Year We rarely take a step back to […]

Read More